Вопрос ученика
12 декабря 2024Алгебра8 класс
Найдите меньшую высоту треугольника со сторонами 16 см, 18 см и 10 см.
Найдите меньшую высоту треугольника со сторонами 16 см, 18 см и 10 см.
Найдем высоту треугольника через формулу площади. S =1/2 * a * h , гда а - сторона треугольника, h - высота, проведенная к этой стороне. h = 2S / a .
Найдем площадь треугольника по теореме Герона S = \(\sqrt{ }\)p(p-a)(p-b)(p-c) , где а, в, с - стороны треугольника, р - полупериметр. р = (16+18+10): 2 = 22 см
S =\(\sqrt{ }\)22*6*4*12 = 24\(\sqrt{ }\)11
Раз нужно найти наименьшую высоту, то будем делить на наибольшую сторону
h = 2 * 24\(\sqrt{ }\)11/ 18 = 8\(\sqrt{ }\)11/3
Ответ: h = 8\(\sqrt{ }\)11/3.
Наши педагоги максимально быстро дадут на него развёрнутый ответ. Это бесплатно!
Задать вопрос