Вопрос ученика
11 мая 2022здравствуйте, помогите с заданием на фото, пожалуйста!
здравствуйте, помогите с заданием на фото, пожалуйста!
Всего в урне 4+6 = 10 шаров. При вынимании одного шара общее число исходов равно 10, число благоприятных исходов (вынут белый шар) равно 4, значит, вероятность события "Вынутый шар оказался белым" равна 0,4.
Поскольку события независимы и равновероятны, то вероятность вынуть 3 черных шара (0 белых) равна третьей степени (1-0,4)^3
Поскольку наша выборка с ВОЗВРАЩЕНИЕМ, то пользуемся формулой Бернулли БИНОМИАЛЬНого распределения числа вынутых белых шаров: p(n)=C(3,n)*p^n*(1-p)^(3-n) для составления ЗАКОНА РАСПРЕДЕЛЕНИЯ ЧИСЛА ВЫНУТЫХ БЕЛЫХ ШАРОВ (таблицей):
n = 0 , p0 = 0,216
n=1 , p1 = 3* 0,144 = 0,432
n=2 , p2 = 3* 0,096 = 0,288
n=3, p3 = 0,064
Математическое ожидание M(X) = 0,432+2*0,288+3*0,064 = 1,2
Среднеквадратическое отклонение D(X) = np(1-p) = 0,72
Ответ: среднеквадратическое отклонение 0,85, M(X) = 1,2
Наши педагоги максимально быстро дадут на него развёрнутый ответ. Это бесплатно!
Задать вопрос