Колебательный контур. Получение электромагнитных колебаний

Физика9 класс

Материалы к уроку

  • 45. Колебательный контур. Получение электромагнитных колебаний.doc

    39 KBСкачать
  • 45. Колебательный контур. Получение электромагнитных колебаний.ppt

    6.10 MBСкачать

Конспект урока

Первым, кто экспериментально получил электромагнитную волну, был немецкий ученый Генрих Герц. Так же он смог передать ее на небольшое расстояние и принять.  В 1886 году Герц заметил крошечные искры, проскакивающие в зазоре медного кольца, когда рядом разряжалась индукционная катушка. Это свидетельствовало о присутствии электромагнитных волн. Герц принялся изучать это явление. Он сконструировал аппарат, который состоял из передатчика и устройства, которое бы создало колебание необходимой частоты и приемника. Для того чтобы понять, в чем заключалась идея Герца в создании передатчика, необходимо вспомнить теоритические выводы Максвелла об электромагнитных волнах: электромагнитные волны создаются ускоренно движущимися зарядами. Создать такие заряды можно только в колебательном контуре. Колебательный контур – это цепь, которая состоит, в идеале, из последовательно соединенной катушки и конденсатора. В таком контуре возникают электромагнитные колебания, то есть периодические изменения со временем электрического и магнитного поля и, соответственно, величин, их характеризующих.
Рассмотрим, как происходят эти колебания. Отсчет времени начинается с того момента, как в цепь подключили заряженный конденсатор. Напряжение на обкладках конденсатора максимально, линии напряженности электрического поля направлены сверху вниз. В следующий промежуток времени, конденсатор начинает разряжаться (то есть электрическое поле ослабевает) и в цепи начинает течь ток. Одновременно с этим в катушке возникнет магнитное поле, препятствующее возрастанию тока в цепи. Здесь мы наблюдаем превращение электрического поля в магнитное. Когда конденсатор полностью разряжен, энергия контура заключена в магнитном поле. Так как конденсатор разрядился, ток начинает в контуре убывать, и в катушке в результате явления самоиндукции возникает индукционный ток, который направлен так же, как и убывающий ток (согласно правилу Ленца). В результате этого конденсатор начинает перезаряжаться, теперь нижняя обкладка конденсатора заряжена положительно, а верхняя отрицательно. Магнитное поле опять превращается в электрическое. С уменьшением магнитного поля до нулевого значения конденсатор полностью заряжается. Энергия контура заключена в электрическом поле. Полностью заряженный конденсатор начинает разряжаться, но так как полярность обкладок конденсатора изменилась, ток потечет в противоположном направлении. Процесс повторится, но в зеркальном отражении.  Таким образом, создаются свободные электромагнитные колебания, то есть колебания, которые возникли благодаря первоначальному запасу энергии (по аналогии с механическими колебаниями). Электромагнитное поле в контуре создано. Однако такой контур очень слабо излучает эту энергию в окружающую среду. Если раскрывать обкладки конденсатора все больше и больше, то все электромагнитные волны будут излучаться в пространстве более свободно.
В своем опыте Герц использовал катушку Румкорфа. Она состоит из первичной обмотки толстой проволоки и вторичной, большого количества витков тонкой проволоки. Эта катушка позволяет получить на концах вторичной обмотки огромное напряжение, благодаря чему сферы заряжаются противоположными зарядами. Через некоторое время в промежутке между сферами проскакивает искра. В этот момент в открытом контуре получаем высокочастотные колебания, которые будут распространяться в виде волны в окружающее пространство.   Электромагнитная волна невидима. Поэтому для ее регистрации или приема Герц использовал кольцо с разрывом. Экспериментируя с размером кольца и расстоянием до контура, Герц получил искровой разряд. Искры были результатом электромагнитных колебаний, которые распространялись в пространстве как волны и заряжали приемник.

 

Остались вопросы по теме? Наши педагоги готовы помочь!

  • Подготовим к ЕГЭ, ОГЭ и другим экзаменам

    Подготовим к ЕГЭ, ОГЭ и другим экзаменам

  • Найдём слабые места по предмету и разберём ошибки

    Найдём слабые места по предмету и разберём ошибки

  • Повысим успеваемость по школьным предметам

    Повысим успеваемость по школьным предметам

  • Поможем подготовиться к поступлению в любой ВУЗ

    Поможем подготовиться к поступлению в любой ВУЗ