Магнитное поле катушки с током. Электромагниты и их применение

Физика8 класс

Материалы к уроку

  • 23. Магнитное поле катушки с током. Электромагниты и их применение.ppt

    5.46 MBСкачать
  • 23. Магнитное поле катушки с током. Электромагниты и их применение.doc

    44.5 KBСкачать

Конспект урока

Если прямой проводник свернуть в виде окружности, то можно исследовать магнитное поле кругового тока.
Проведем опыт (1). Провод в виде окружности пропустим через картон. Поместим несколько свободных магнитных стрелок на поверхности картона в различных точках. Включим ток и видим, что магнитные стрелочки в центре витка показывают направление одинаковое, а  вне витка с обеих сторон в другую сторону.
Теперь повторим опыт (2), поменяв полюса, а значит и направление тока. Видим, что магнитные стрелочки изменили направление на всей поверхности картона на 180 градусов.
Сделаем вывод: магнитные линии кругового тока то же зависят от направления тока в проводнике.
Проведем опыт 3. Уберем магнитные стрелочки, включим электрический ток и осторожно по всей поверхности картона насыплем мелкие железные опилки У нас получилась картина магнитных силовых линий, которая называется «спектр магнитного поля кругового тока» . Как же в этом случае определить направление магнитных силовых линий? Вновь применим правило буравчика, но в применении к круговому току. Если направление вращения ручки буравчика совместить с направлением тока в круговом проводнике, то направление поступательного движения буравчика будет совпадать с направлением магнитных силовых линий.
Рассмотрим несколько случаев.
1.    Плоскость витка лежит в плоскости листа, ток по витку идет по часовой стрелке. Вращая виток по часовой стрелке, мы определяем, что магнитные силовые линии в центре витка направлены внутрь витка «от нас». Это условно обозначается знаком «+» (плюс). Т.е. в центре витка мы ставим «+»
2.    Плоскость витка лежит в плоскости листа, ток по витку идет против часовой стрелки. Вращая виток против часовой стрелки, мы определяем, что магнитные силовые линии выходят из цента витка «к нам». Это условно обозначается «∙» (точкой). Т.е. в центе витка мы должны поставить  точку («∙»).
Если прямой проводник намотать на цилиндр, то получится катушка с током, или соленоид.
Проведем опыт (4.) Используем для опыта ту же цепь, только провод теперь пропущен через картон в виде катушки. Расположим несколько свободных магнитных стрелок на плоскости картона в различных точках: у обоих концов катушки, внутри катушки и с обеих сторон снаружи. Пусть катушка расположена горизонтально (в направлении «слева – направо»). Включим цепь и обнаружим, что магнитные стрелки, расположенные по оси катушки, показывают одно направление. Отмечаем, что у правого конца катушки стрелка показывает, что силовые линии входят в катушку, значит –это «южный полюс» ( S), а в левом магнитная стрелка показывает, что выходят, это «северный полюс» (N). Снаружи катушки магнитные стрелки имеют противоположное направление по сравнению с направлением внутри катушки.
Проведем опыт (5). В этой же цепи поменяем направление тока. Обнаружим, что направление всех магнитных стрелок изменилось, они повернулись на 180 градусов. Делаем вывод: направление магнитных силовых линий зависит от направления тока по виткам катушки.
Проведем опыт (6). Уберем магнитные стрелки и включим цепь. Осторожно «посолим железными опилками» картон внутри и снаружи катушки. Получим картину магнитных силовых линий, которая называется «спектр магнитного поля катушки с током»
А как же определить направление магнитных силовых линий? Направление магнитных силовых линий определяется по правилу буравчика так же, как и для витка с током: Если направление вращения ручки буравчика совместить с направлением тока в витках, то направление поступательного движения совпадет с направлением магнитных силовых линий внутри соленоида. Магнитное поле соленоида похоже на магнитное поле постоянного полосового магнита. Тот конец катушки, из которого выходят силовые линии, будет «северным полюсом» (N), а тот, в который входят силовые линии – «южным полюсом» (S).
После открытия Ганса Эрстеда многие ученые стали повторять его опыты, придумывая новые, чтобы обнаружить доказательства связи  электричества и магнетизма. Французский ученый Доминик Араго поместил железный стержень, в стеклянную трубку и поверх нее намотал медный провод, по которому пропустил электрический ток. Как только Араго замкнул электрическую цепь, стержень из железа так сильно намагнитился, что притянул к себе железные ключи. Чтобы оторвать ключи, пришлось приложить значительные усилия.  Когда   Араго отключил источник тока, то ключи отвалились сами! Так Араго изобрел первый электромагнит. Современные электромагниты состоят из трех частей: обмотки, сердечника и якоря. Провода помещают в специальную оболочку, которая играет роль изолятора. Проводом наматывают многослойную катушку – обмотку электромагнита. В качестве сердечника используют стальной стержень. Пластина, которая притягивается к сердечнику, называется якорем. Электромагниты получили широкое применение в промышленности благодаря их свойствам: они быстро размагничиваются при выключении тока; их можно изготавливать самых различных размеров в зависимости от назначения; меняя силу тока можно регулировать магнитное действие электромагнита. Электромагниты применяются на заводах для переноски изделий из стали и чугуна. Эти магниты имеют большую подъемную силу. Применяются электромагниты также  в электрическом звонке, электромагнитных сепараторах, в микрофонах, в телефонах. Сегодня мы рассмотрели магнитное поле кругового тока, катушки с током. Познакомились с электромагнитами, их применением в промышленности и в народном хозяйстве.

 

Остались вопросы по теме? Наши педагоги готовы помочь!

  • Подготовим к ЕГЭ, ОГЭ и другим экзаменам

    Подготовим к ЕГЭ, ОГЭ и другим экзаменам

  • Найдём слабые места по предмету и разберём ошибки

    Найдём слабые места по предмету и разберём ошибки

  • Повысим успеваемость по школьным предметам

    Повысим успеваемость по школьным предметам

  • Поможем подготовиться к поступлению в любой ВУЗ

    Поможем подготовиться к поступлению в любой ВУЗ